Projects

Explore highlights of my work, showcasing innovative solutions in various domains.

Data driven analysis
AI workflow
Core projects

From High-Fidelity Data to Actionable Insights

Iā€™m focusing on how high-fidelity data in material testing, simulations, telematics, or ADAS can transform into engaging dashboards. These dashboards highlight new chart types like map-based views and interactive timelines, revealing insights that unmask bottlenecks, vital paths, and patterns in complex data sets.

Use Case: Automated Data Extraction and Interactive Visualization

How it works:

flowchart TD %% Define Styles classDef process fill:#e1f5fe,stroke:#01579b,stroke-width:2px, font-weight:bold classDef limitation fill:#ffebee,stroke:#c62828,stroke-width:2px, font-style:italic classDef enhancement fill:#fff3e0,stroke:#e65100,stroke-width:2px, font-style:italic classDef highlight fill:#ffe0b2,stroke:#ff9800,stroke-width:2px, font-weight:bold %% CFD Analysis Subgraph subgraph CFD["āš” Large Data Set"] A["High Fidelity Model"] --> B["Typical Excel Charts \n Stress/Temperature Maps "] end %% Smart Processing Subgraph subgraph AUTO["šŸ“Š Smart Processing"] C["Smart Data Extraction"] --> D["Sankey View"] C --> E["Network Graph"] D --> F["Lumped Model"] E --> F["Lumped Model"] end %% System Model Subgraph subgraph SIM["šŸ”„ System Model"] G["Simscape Model"] --> H["Auto-Routed System"] end %% Interconnections with Edge Label Closer to C A -->|Scripts| C B --> L1["ā— **Limitations:**\n- No Critical Path Identification\n- No Input Integrity Checks"] C --> E1["šŸ’” **Benefits of Smart Processing:**\n- Input Verification\n- System-Level Analysis\n- Performance Insights\n- Critical Path"] F --> G %% Class Assignments class A,B,C,D,E,F,G,H process class L1 limitation class E1 enhancement %% Optional: Styling the Label Closer to C linkStyle 0 label-position right
flowchart TD %% Define Styles classDef process fill:#f8f0fc,stroke:#6b46c1,stroke-width:2px classDef data fill:#e6fffa,stroke:#047481,stroke-width:2px classDef output fill:#fefcbf,stroke:#975a16,stroke-width:2px %% Frontend Subgraph subgraph UI["šŸŽØ Frontend"] A["Drag-Drop Interface"] --> B["React Flow Canvas"] B --> C["Workflow Visualizer"] end %% Backend Subgraph subgraph API["āš™ļø Backend"] D["FastAPI Server"] --> E["LLM Router"] E --> F["Custom Agents"] D --> J["Additional FastAPI for Database Retrieval"] end %% Knowledge Base Subgraph subgraph RAG["šŸ“š Knowledge Base"] G["Document Store"] --> H["Titan v2 Embeddings"] H --> I["Claude Integration"] end %% External Databases Connected to Additional FastAPI subgraph Databases["šŸ’¾ Connected Databases"] K["Database 1"] L["Database 2"] M["Database 3"] end %% Connections Between Subgraphs B --> D F --> C I --> C J --> K J --> L J --> M %% Output Components B1["šŸš€ No-Code AI Pipeline"] B2["šŸ¤– Multi-Agent System"] B3["šŸ’” Context-Aware Responses"] %% Linking Outputs C --> B1 F --> B2 I --> B3 %% Class Assignments class A,B,C,D,E,F,J process class G,H,I,K,L,M data class B1,B2,B3 output

An AI workflow pipeline with a drag-and-drop interface, enabling users to integrate data from existing databases, connect multiple LLMs with custom system prompts (agentic), and visualize the overall system. Developed with React and FastAPI, it provides a clean and intuitive frontend for building and understanding complex workflows.

react-flow
flowchart TD %% Define Styles classDef input fill:#e3f2fd,stroke:#1565c0,stroke-width:2px classDef process fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px classDef storage fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px classDef output fill:#fff3e0,stroke:#e65100,stroke-width:2px %% Document Processing Subgraph subgraph PREP["šŸ“ Document Processing"] A[Upload Files] --> B[Hash Check] B -->|New File| C[Custom Chunking] B -->|Existing File| D[(Stored Embeddings)] C --> E[Token Counting] E --> F[Cost Estimation] F --> G[Generate Embeddings] G --> D end %% Query Processing Subgraph subgraph QUERY["šŸ” Query Processing"] H[User Question] --> I[Embed Query] I --> J[Vector Search] D --> J J --> K[Fetch References] K --> L[Generate Response] L --> M[Citations & Sources] end %% Connections Between Subgraphs G -.-> D %% Class Assignments class A,H input class B,C,E,F,G,I,J,K,L process class D storage class M output

A Streamlit-based RAG chat interface that retrieves results with references using Titan v2 for embeddings and Claude for response generation.

rag

Core Domains

Select a domain to explore related projects and portfolios:

Download PDF